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Institute of Theoretical Physics and Astronomy, A. Gosˇtauto 12, 2600 Vilnius, Lithuania

ReceiVed: August 21, 1997; In Final Form: NoVember 3, 1997

Using the spin-polarized method it is shown that the periodicity of the various properties of lanthanides and
actinides is related with the “electron-vacancy” symmetry for the ground state of the fN shell. This symmetry
remains approximately valid also taking into account some important terms and configuration mixing effects.
The algebraic expressions for the ground-state energy and the ionization energies in terms of the number of
f electrons are obtained and the interval rule is derived. The reason for the inclinedW systematic orL
dependence is the correlation between the values of the two quantities, depending almost linearly on the
number of f electrons in the four quarters of this shell.

Introduction

Some chemical and physical properties of lanthanides and
actinides, especially in the trivalent state, show periodic
regularities depending on the number of electrons in thenfN

shell. Such regularities known as small periodicity and gado-
linium break,1-4 tetrad or double-double effect,5-8 two zigzag
segments or inner series periodicity,9-12 interval rules,13,14 L
dependence, and inclinedWsystematics15-17 have been widely
investigated and discussed. The summary of these results and
their analysis has been given in the review.18 Various explana-
tions of such regularities have been proposed: the extrastabi-
lization in the crystal field,19 the nepheleutic effect,20 and spin-
orbit21 and Coulomb8 interactions within thenfN shell. The
crystal field is relatively weak for the inner fN electronic
shell.18,22 Thus at present the periodicity of the properties in
the lanthanide and actinide series is usually related with the
peculiarities of the atomic open fN shell.18 The atomic origin
of the periodicity is supported by the similarity of dependence
of chemical properties (oxidation potentials, cohesive energies,
enthalpies of decomposition and disproportionation, etc.) for
some simple compounds and of physical properties (ionization
potentials, differences of energies for the ground state of
configurations, etc.) on the number of fN electrons in the
lanthanides and actinides series.18 Some examples of such
similarity are presented in Figures 1 and 2. These regularities
have been interpreted as the consequence of the variation of
the spin-angular coefficients at the radial integrals in the
expression for the energy of the ground state of the fN shell.8,18

However, a clear understanding of the nature of these regularities
was absent. The later more complete and reliable results23,25-27

support the regularities established in the 1970s on the basis of
less numerous data.
The aim of this work is to reveal the reasons for such

periodicity in terms of the symmetry properties of the fN shell
in its ground and higher multiplicity states, using the spin-
polarized model. For chemical properties, related with the
number ofnf electrons, the physical origin of the periodicity
can be modified to a smaller or larger extent and obtains various
forms or even does not appear at all. In this work we investigate
only the physical reasons, which can be important to understand
the origin of the periodicity of various chemical properties.

Calculations have been performed using the pseudorelativistic
Hartree-Fock (HFR) method (some principal relativistic cor-
rections are taken into account calculating radial wave func-
tions28).

Symmetry Properties of thenfN Shell in Its Ground State

In the central field approximation only the radial wavefunction
of an electron depends on the peculiarities of the field within
an atom. The equation for the single-electron wavefunction is
transformed to the one-dimensional equation for the radial
function with the effective potential

whereVnl(r) is the true potential, and the second term corre-
sponds to the classical centrifugal energy. Due to this positive
term, the effective potential for the f electron in a neutral atom
and first ions obtains the form of two potential wells separated
by a positive potential barrier.29 The radial orbital of the 4f

Figure 1. Variation of the third ionization potentialI3 (O) (experimental
values23), the enthalpy of decompositionHp (3) (semiempirical data24),
and theR parameter (b), calculated for the ionization equilibrium24

(two last quantities correspond to the reaction LnHal2 f 1/3Ln +
2/3LnHal3) in the lanthanide series.

Vefnl(r) ) Vnl(r) +
l(l + 1)

2r2
(1)
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electron in lanthanides and of the 5f electron in actinides for
the atom ground state is mainly localized in the narrow inner
well. It causes the penetration of the corresponding fN shell in
the atomic core and a very strong Coulomb interaction between
the electrons of this “compressed” shell, the importance of this
interaction being for the atomic properties.
In the single-configuration central field model the approximate

symmetry between the electrons and vacancies exist. The
partially (lN) and almost (l4l+2-N) filled shells are described by
the same many-electron terms and the spin-angular parts of the
wavefunctions differ only by the phase factor for these
complementary shells. This symmetry is violated only in the
radial space due to the dependence of the radial wavefunction
on the effective nuclear charge peculiarities of the field within
the atom.28

The “electron-vacancy” symmetry for the wavefunctions leads
to the symmetry relations for the matrix elements of atomic
operators, which do not contain the scalar part (the matrix
element of the scalar operator is directly proportional to the
number of electrons and is not symmetric with respect to the
replacement of electrons by vacancies). The average energy
of the spin-orbit interaction is equal to zero, but the Coulomb
interaction within the electronic shell has some nonzero average
value. It can be excluded by expressing the energy with respect
to the average energy. For the configuration with one open fN

shell it takes the form

Hereγ is the many-electron state,Eav(fN) is the average energy
of configuration,Ei is the linear combination of the Slater radial
integralsFk(nf,nf) introduced in ref 30 for the description of
the fN shell,e′i is the spin-angular coefficient atEi excluding its
average valueeji (e′i ) ei - eji), únf is the spin-orbit constant,
andøf is the spin-angular coefficient at it.

For the coefficientse′i and øf the “electron-vacancy” sym-
metry is expressed by the relations

Usually the fN shell is in its ground state. The coupling within
this shell is close to theLS coupling, and the ground state,
according to Hund’s rule, has the highest multiplicity. For such
a state not only the quantum numbers of spin (S), orbital (L),
and total (J) moments as well as the seniorityν but also the
additional quantum numbersui, wi (necessary for the charac-
terization of the states of the fN shell) can be expressed in terms
of the number of electronsN:31

HereN is equal to the number of electronsN for the partially
filled shell (N e 7) and to the number of vacancies 14- N for
the almost filled shell (N > 7).
Quantum numbersL, ωi andui describing the properties of

the wavefunction in the orbital space show additional symmetry
with respect to a quarter of the shell. This follows from the
possibility of treating the shell in its highest multiplicity state
as consisting of two subshells with spins of electrons directed
up (nlNv) and down (nlN′

V). The spin-polarized model has been
elaborated in refs 32-34. However in general the partition of
shell into subshells

can be accomplished in various ways, differing by the number
N′. All these subconfiqurationslV

N′ lv
N-N′, lV

N′+1 lv
N-N′-1, ..., are

mixed between them by the spin-orbit interaction. This
partition becomes unique only for the terms of highest multi-
plicity:

The attribution of the projection of spin in the first subshell is
conventional.
Instead of spin and orbital spaces, introduced in the traditional

approach, the spin-polarized model uses two orbital spaces in
which electrons have different projections of spins. Both
subshellslV

N and lv
N′ have the same number of single-electron

Figure 2. Variation of the fourth ionization potentialI4 (3), the system
difference SD (the difference between the energies of the ground levels
of 5fN-16d and 5fN configurations) for trivalent ions (1) (both quantities
calculated by the pseudorelativistic Hartree-Fock method), and the
oxidation potentialE0(IV-III) (experimental (O) and empirical (b)
values26) in the actinide series.
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states. The closed subshelll2l+1 has all quantum numbers,
defined in the orbital space, equal to 0. The “electron-vacancy”
symmetry for the subshell, having only half the states of the
shell, manifests as the symmetry with respect to a quarter of
the shell. Thus the coefficients at the radial integrals in the
matrix elements of operators (whose average value is equal to
zero) can differ for the highest multiplicity statesγh of lN and
l2l+1-N configurations only by a phase factor. In the case of
the fN shell the following relations take place:

For the states of the highest multiplicity thee′2 coefficient
disappears. Thee′1 coefficient has an average value nonequal
to zero; thus the symmetry with respect to a quarter of the shell
takes place only for the reduced coefficiente′′1, which is
obtained by subtracting frome′1 its average value for the
corresponding subshell. This value is equal toe′1; thus,

There exist additional relations for the operators in the spin-
polarized approach; thus this give the possibility to obtain the
algebraic expressions of the matrix elements for the terms of
higher multiplicity.31 In the case of the ground stateγg these
formulas can be simplified and expressed in terms of the number
of f electrons using expressions 5-10 for the quantum numbers
of this state:

The formula for the spin-orbit coefficientø holds not only for
f electrons; thus,l in eq 18 is not definite.
The dependence of the coefficientse′1, e′3, and ø on the

number of f electronsN is shown in Figure 3. As has been
indicated above, the coefficientse′3 andø, whose average value
is equal to 0, show symmetry with respect to a quarter of the fN

shell, but thee′1 coefficient giving the contribution to the
average energy is symmetric only with respect to a half shell.
This coefficient gives the minimum value atN ) 7 and
determines the additional stability of the half-filled f7 shell. On
the other hand, coefficientse′3 andø reach minimal values atN
) 3-4 andN ) 10-11 and give rise to additional stability for
one-fourth and three-quarters of the shell.8

Of course, the true role of the various parts of the interaction
essentially depends on the values not only of the coefficients
but also of the radial integrals. The integralE1 exceedsE3 by
approximately 2 orders; thus, the term-dependent part of the
Coulomb interaction betweennf electrons is mainly determined
by the contribution ofe′1E1. The Coulomb and the spin-orbit

interaction parts of the ground-state energy (with respect to the
average energy) for lanthanides and actinides are given in Figure
4. On going from lanthanides to actinides the Coulomb
interaction within thenfN shell decreases (the effect of the

e′3(f
Nγh) ) e′3(f

7-Nγh),

e′3(f
7+Nγh) ) e′3(f

14-Nγh) (0e Ne 7) (13)

ø(fNγh) ) ø(f7-Nγh),

ø(f7+Nγh) ) ø(f14-Nγh) (0e Ne 7) (14)

e′′1(f
Nγh) ) 0 (15)

e′1(f
Nγg) ) - 9

2‚13
N (N - 1); e2(f

Nγg) ) e′2(f
Nγg) ) 0 (16)

e3(f
Nγg) ) e′3(f

Nγg) ) - 1

23‚3‚5
N (7- N )[78- 37N (7-

N ) + 4N 2(7- N )2] (17)

ø(lNγg) )

{[N2 - (2l + 1)N- 2]/4 0< N< 2l + 1
- (N- 2l - 1)(4l + 2- N)/4 Ng 2l + 1

(18)

Figure 3. Dependence of the Coulomb interaction coefficientse′1 (O)
(eq 16),e′3 (b) (eq 17), and the coefficientøf (0) (eq 18) at the spin-
orbit constantúf on the number of electrons in the fN shell.

Figure 4. Variation of the energy of Coulomb interaction within the
nfN shell energy (with respect to the average energy) (O) and the spin-
orbit interaction energy (3) for the ground state of trivalent lanthanides
(solid line) and actinides (dotted line).
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potential barrier is less expressed); on the contrary the spin-
orbit interaction increases for actinides approximately twice.
However for the majority of elements it remains considerably
smaller than the Coulomb interaction. Thus theLSscheme can
be used for the description not only of the 4fN shell in
lanthanides but also of the 5fN shell in actinides.
The main terme′1E1 of the term-dependent energy deter-

mines the small periodicity or the gadolinium break for some
properties related with the ground-state energy, for example,
for the ionic radii.
The ground state of thenfN shell is usually separated

energetically by about 1 eV from the other states with the same
total momentumJ. This reason together with the relatively
small spin-orbit interaction within the 4fN shell causes fairly
pure coupling for the ground state of lanthanides with one open
4fN shell.22,35 Mixing of terms essentially increases for actinides,
but due to the tendency of terms with higher multiplicity to lie
lower in the spectrum, the ground term tends to mix mainly
with the other terms of the same multiplicity. Such mixing does
not violate the symmetry with respect to a quarter shell which
takes place for all terms of highest multiplicity.
This symmetry is not violated also by some configuration

mixing effects. It is known that the values of integralsEi,
calculated in the single-configuration approximation, essentially
exceed their empirical values. This is caused by the interaction
of the considered configuration with some type of distant
configurations.36 However the ratioEiemp/Eitheorremains almost
constant for all lanthanides28,37 (the systematic semiempirical
investigation of actinides has not been performed yet).
The mixing of the considered configuration with some other

distant configurations gives rise to the correlation corrections36

whereR, â, γ are the empirical parameters andG(G2), G(R7)
are the eigenvalues of the Casimir operator for the specialG2

andR7 groups. These corrections play a rather important role
in the spectra of elements with an open fN shell.22,37 Some
relativistic corrections like the part of the “orbit-orbit” interac-
tion can also be presented in the form of eq 19. The quantities
G(G2), G(R7) are expressed in terms of quantum numbersωi

andui, which for the terms of highest multiplicity are symmetric
with respect to a quarter of shell. For the ground term using
the eqs 7-10 we obtain the following formula:

Thus all three factors at the constantsR, â, andγ in eq 19
are also symmetric with respect to a quarter and a half a shell
(Figure 5).
Consequently the “electron-vacancy” symmetry not only takes

place in the single-configuration pure term approximation but
remains approximately valid also taking into account some term
and configuration mixing as well as relativistic effects.
When a configuration of the rare earth atom contains (n+1)d

or (n+2)s electrons above thenfN shell (n ) 4 for lanthanides
andn ) 5 for actinides), the Coulomb interaction within this
shell remains dominant in the atom (it exceeds several times
and even by an order of magnitude the interaction between the
nfN shell and (n+1)d or (n+2)s electrons). Thus usually in the

ground state of such a configuration thenf electrons keep their
many-electron quantum numbers according to Hund’s rule. The
energy of the direct Coulomb interaction betweennfN and other
open shells also obeys the “electron-vacancy” symmetry for the
nfN shell, but this does not take place for the Coulomb exchange
interaction.
This reason together with the larger mixing for the ground

state of such a configuration leads to additional deviations from
the symmetry with respect to a quarter of the fN shell.

The Symmetry for the Energy Differences. The Interval
Rules andL Dependence

One of the principal atomic quantities, the ionization energy
of a shell (the binding energy of an electron in the shell), is
defined as the energy difference of the ion with vacancynl-1

and the atom (or ion) without this vacancy in their ground states:

We will consider these quantities for the configurations with
one opennfN shell. When thenfN shell has the smallest
ionization energy among the atomic shells,Inf gives the
ionization potential (ionization energy) for the atom.
It is useful to separate the ionization potential into the parts

corresponding to the contributions of the average energy
(Inf
av), the Coulomb interaction betweennf electrons (Inf

C), and
the spin-orbit interaction (Inf

so):

According to the Koopman’s theorem, the average energy part
approximately is equal to the single-electron energy and it
depends almost linearly on the atomic number. For the
qualitative investigation of theInf dependence on the number
of electrons in thenfN shell the radial integralsEi and the spin-

∆Ecor ) RL(L + 1)+ âG(G2) + γG(R7) (19)

G(G2) )
N (7- N )

22‚33‚5
[6 + 41N (7- N ) - 2N 2(7- N )2]

(20)

G(R7) ) 1
2
N (7- N ) (21)

Figure 5. Symmetry of the eigenvalues of Casimir operatorsG(G2)
(O) andG(R7) (b) for the ground state of the fN shell. A few important
configuration mixing effects are expressed in terms of these values (eq
19).

Inl ) E(nl-1γ′g) - E(γg) (22)

Inf ) Inf
av + Inf

C + Inf
so (23)
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orbit constantúnf can be supposed for the configurationsnfN

andnfN-1 to be equal; then the Coulomb and the spin-orbit
parts in eq 23 can be presented as follows:

where

Taking the differences of the coefficients the symmetry fN f
f7-N (N e 7) is changed into fN f f8-N; thus the quantities
∆e′i and∆øf become symmetric with respect to the numbers of
electronsN0 ) 4 and 11 (Figure 6). Consequently, the following
relation takes place for∆e′i and∆øf:

whereX ≡ ∆ei, ∆øf; N0 ) 4, 11; andq ) 1, 2, 3.
The values of∆e1(fN0) and∆øf(fN0) are equal to 0.
Namely the variation of the coefficient∆e′1 determines the

main trend of the periodicity for the ionization potential and
other quantities related with the energy differences of two
configurations with different numbers of f electrons (Figures
1, 2). The other coefficients∆e′3 and∆øf only slightly modify
this periodicity.
The integralsEi can be approximated by the linear series,

the spin-orbit constantúnf, and the average energy part of the
binding energy (Inf

av) by the quadratic series in terms of the

number of electrons (for the ions Ln3+ and An3+ the accuracy
of this approximation is better than 1%):

whereai, b, c, d, ande are the numerical constants, obtained
by the least-squares fitting.
Using the expansion 23 and the symmetry properties for the

coefficients 26 and 27, the following expression for the ratio
of the ionization energies is obtained:

where the second term∆ on the right side of equation has the
following expression:

The coefficientsc andd do not give contributions to∆. The
quantity∆ gives only a small correction to 2 for the neutral
and several time ionized atoms (Table 1). Omitting∆, the
interval rule for the binding energies is obtained:

It can be presented in the other form

Such interval rules for the ionization energies and oxidation
potentials were obtained empirically12 and grounded using the
properties of the coefficients at the radial integrals.18 It was
indicated that the deviations from the interval rules can be
caused only by the crystal field. As follows from eq 33, the
spin-orbit and even Coulomb interaction within thenfN shell
as well as the nonlinearity in the variation of the average
energies can also be the reason for such deviations. For neutral
atoms and the first ions all these contributions are of the same
order and partially compensate each other. The deviations from

Figure 6. Dependence of the differences∆e′i(fN) (i ) 1, 3) (eq 26)
and∆øf(lN) (eq 27) on the number of electrons in the fN shell.

ICnf ) ∑
i

∆e′i(f
N)Ei (24)

Inf
so) ∆øf(f

N)únf (25)

∆e′i(f
N) ) e′i(f

N-1) - e′i(f
N) (26)

∆øf ) øf(f
N-1) - øf(f

N) (27)

X(fN0-q) + X(fN0+q) ) 2X(fN0) (28)

TABLE 1: Values of the Coefficientsa1, a3, b, and e in the
Expansions 29, 30, and 31 as well as the Deviation from the
Interval Rule ∆ (Eq 32) for Ln3+ and An3+ Ions

ions
a1× 104,

eV
a3× 104,

eV
b× 104,
eV

e× 102,
eV

Ln3+ 9.763 0.274 8.630 -3.504
An3+ 8.912 0.223 15.57 -2.442

∆ × 103

N0 ) 4 N0 ) 11

ions q) 1 q) 2 q) 3 q) 1 q) 2 q) 3

Ln3+ -1.80 -7.14 -16.08 -1.77 -7.10 -15.90
An3+ -1.27 -5.05 -11.43 -1.25 -5.01 -11.22

Ei(fN) ) Ei(fN0) + ai(N- N0) (29)

únf(f
N) ) únf(f

N0) + b(N- N0) + c(N- N0)
2 (30)

Inf
av(fN) ) Inf

av(fN) + d(N- N0) + e(N- N0)
2 (31)

Inf(f
N0-q) + Inf(f

N0+q)

Inf(f
N0)

) 2+ ∆ (N0 ) 4, 11;q) 1, 2, 3)

(32)

∆ ) {1813a1q2 - 1
5
a3q

2(2q4 - 35q2 + 153)-

bq[q+ δ(q,3)δ(N0,4)] + 2eq2}I4f-1(fN0) (33)

Inf(f
N0-q) + Inf(f

N0+q)

Inf(f
N0)

) 2 (N0 ) 4, 11;q) 1, 2, 3) (34)

Inf(f
N0-q) + Inf(f

N0+q)

Inf(f
N0-q′) + Inf(f

N0+q′)
) 1 (N0 ) 4, 11;q, q′ ) 1, 2, 3)

(35)
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the interval rule in the free ion model become more significant
only with the essential increase of the spin-orbit interaction
(Figure 7).
The interval rule also approximately holds for the energy

differences of the energies for the ground states of twonfN and
nfN-1n′l′ configurations, differing by the number ofnf electrons.9
This energy difference between the two configurations is mainly
determined by the change of the number ofnf electrons and
has symmetry properties similar to the ionization energy for
thenfN shell (Figure 2).
The interval rules take place also for the other physical and

chemical properties of lanthanides and actinides, which can be
related with the differences of the energies for configurations
with different numbers ofnf electrons in their ground state.14,18,38

Some attempts were made to relate the main properties of
the ground state of lanthanide and actinide ions with the orbital
quantum numberL of this state. For ionization energies, radial
integralsEi and únf, ionic radii, and other quantities16 such
dependence has been found to be nearly linear.
As shown above, various properties of the ground state,

including the orbital quantum numberL, can be expressed in
terms of the numberN of f electrons. Thus it is possible to
obtain the relations between these characteristics andL, but
usually they are not simple. However, within the four intervals
of the f electron numbers 1-3, 4-7, 8-10, and 11-14, the
orbital quantum numberL varies almost linearly (Figure 8).
Consequently, every quantity that behaves in a similar manner
within these intervals (its curve is a little convexed as forL
(the ionization potential) or even is strictly linear (some quantity
X in Figure 8)) can be represented by the “inclinedW” plot
consisting of four linear segments. This plot can sometimes
be useful for the interpolation of values, but it shows only the
correlation of two quantities, not their true linear dependence
(taking into account excluded intervals 7-8 and 10-11, the
relation becomes considerably more complex).

Conclusions

We proceed from the predominant assumption that the
periodicity of the chemical properties for lanthanides and
actinides is mainly determined by the peculiarities of the inner
atomic nfN shell and investigate the symmetry properties for
the characteristics of this shell and the related quantities. The
electronic shell in its higher multiplicity state can be separated
in a unique way into two subshells with spins of electrons
directed up and down. The “electron-vacancy” symmetry for
the subshell having only half states of the shell manifests as
the symmetry with respect to a quarter of the shell. It is
characteristic for the many-electron numbersL, U,W, defined
in the orbital space, and for the matrix elements of operators,
having no scalar part.
The symmetry with respect to a quarter of the shell not only

takes place in the single-configuration pure term approximation
but remains approximately valid also taking into account some
term and configuration mixing as well as relativistic effects.
It is shown that all many-electron quantums numbers,

energies, and some other characteristics for the ground state of
the fN shell can be expressed in terms of the numberN of nf
electrons. The interval rule for the ionization energies is
obtained, and it is shown that the deviation from this rule in
the free atom model becomes more significant only with the
increase of spin-orbit interaction. The “inclinedW” plot for
some quantities is explained as the consequence of the near
linear dependence of the corresponding quantity andL on
electron numbers within four intervals.
Of course, the symmetry originating from the properties of

the atomicnfN shell is modified to a smaller or larger extent by

Figure 7. Deviation of the ratio of ionization energies from the interval
rule with the increase of the contribution of the spin-orbit interaction
with respect to the Coulomb interaction. Such increase is modeled
multiplying the spin-orbit interaction constantú4f by coefficientk at
the constant values of Coulomb interaction integrals for Ln3+. The
numberq is indicated near the corresponding curve (without prime for
N0 ) 4 and with prime forN0 ) 11).

Figure 8. Variation of the orbital quantum numberL, the fourth
ionization potentialI4 (experimental values17), and some quantityX
directly proportional to the numberN of 4f electrons in the series of
lanthanides (a) and the correlation betweenI4, X, and L values (L
dependence) (b, c).
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the environmental effects and takes various forms or even does
not appear at all. Thus our results show only the tendency for
the manifestation of periodicity.
The main results obtained can be extended to the dN shell,

but the periodicity of properties for the elements with this shell
is more modified by the chemical bonding and configuration
mixing effects.
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